Page 1 of 2 12 LastLast
Results 1 to 10 of 12

Thread: Player research: Exactly how does ensorcell impact enchant difficulty?

  1. #1

    Default Player research: Exactly how does ensorcell impact enchant difficulty?

    The player research page for 925 is awesome:

    https://gswiki.play.net/Research:Enchant_(925)_Formula

    However it did not contain any information about exactly how much ensorcell tier increases the difficulty of an enchant. Searching the forums also didn't turn up anything aside from the anecdotal. So I decided to use the neat encumberance/coin method at the bottom of the page to begin answering this question. Here's what I did:

    (EDIT: The results in this first post are bogus. See later posts for redone tests according to Mark's suggestions. So far the results say there is a difficulty increase of 20 points each for T1, T2, and T3.)

    1. Bought two vultite short swords from the Landing. These are 4x, nothing else on them.
    2. Browbeat a young sorc into applying a T1 to one of the swords.
    3. Took my wizard to the FWI bank.
    4. Withdrew/deposited coin in a loop and 925'd the non-T1 sword each time to check difficulty. Used binary search to determine exactly how many coins put me at the 97% chance breakpoint ("horribly unlucky"). This turned out to be 28855 coins (+/- 5 coin error factor).
    5. Then binary-searched the 90% chance breakpoint ("barring bad luck"). That turned how to be 30870 coins. That's a different of 2015 coins for 7 points of difficulty, or 288 coins per point.
    6. Now I swapped in the T1 sword and redid step 4 to determine the 97% breakpoint again. Result was now 26835 coins.

    So the difference between the 97% breakpoint of the T0 and T1 swords was 2020 coins. That is, the T1 sword is 2020 coins more difficult. Using the math from step 5, this means it is about 7 points more difficult. In the context of all the pluses and minuses to enchant, a mere 7 points isn't all that much. Therefore I strongly doubt that that this same number can be extrapolated to higher tiers. That is, I suspect a T2 would be more than 7 points harder than a T1, and so on. I plan on continuing this research as I get the sword ensorcelled upwards, redoing all the above steps for each tier. (If any sorcs want to donate necro to the cause...)

    It would also be neat if a sorcerer could research the opposite question using a similar method -- that is, exactly how much harder does enchant value make ensorcell? However, I'm not sure encumbrance works the same way for ensorcell; the coin trick is certainly the easiest way to fine-tune enchant difficulty for a wizard.

    (If I fucked up spectacularly somehow in the above steps, I'm sure you will let me know.)
    Last edited by Merzbow; 03-13-2019 at 09:58 AM.

  2. #2

    Default

    Quote Originally Posted by Merzbow View Post
    The player research page for 925 is awesome:

    https://gswiki.play.net/Research:Enchant_(925)_Formula

    However it did not contain any information about exactly how much ensorcell tier increases the difficulty of an enchant Searching the forums also didn't turn up anything aside from the anecdotal. So I decided to use the neat encumberance/coin method at the bottom of the page to begin answering this question. Here's what I did:

    1. Bought two vultite short swords from the Landing. These are 4x, nothing else on them.
    2. Browbeat a young sorc into applying a T1 to one of the swords.
    3. Took my wizard to the FWI bank.
    4. Withdrew/deposited coin in a loop and 925'd the non-T1 sword each time to check difficulty. Used binary search to determine exactly how many coins put me at the 97% chance breakpoint ("horribly unlucky"). This turned out to be 28855 coins (+/- 5 coin error factor).
    5. Then binary-searched the 90% chance breakpoint ("barring bad luck"). That turned how to be 30870 coins. That's a different of 2015 coins for 7 points of difficulty, or 288 coins per point.
    6. Now I swapped in the T1 sword and redid step 4 to determine the 97% breakpoint again. Result was now 26835 coins.

    So the difference between the 97% breakpoint of the T0 and T1 swords was 2020 coins. That is, the T1 sword is 2020 coins more difficult. Using the math from step 5, this means it is about 7 points more difficult. In the context of all the pluses and minuses to enchant, a mere 7 points isn't all that much. Therefore I strongly doubt that that this same number can be extrapolated to higher tiers. That is, I suspect a T2 would be more than 7 points harder than a T1, and so on. I plan on continuing this research as I get the sword ensorcelled upwards, redoing all the above steps for each tier. (If any sorcs want to donate necro to the cause...)

    It would also be neat if a sorcerer could research the opposite question using a similar method -- that is, exactly how much harder does enchant value make ensorcell? However, I'm not sure encumbrance works the same way for ensorcell; the coin trick is certainly the easiest way to fine-tune enchant difficulty for a wizard.

    (If I fucked up spectacularly somehow in the above steps, I'm sure you will let me know.)
    Horribly unlucky is 100% not 97%. The 2020 coins represent 5% encumbered body weight which translates to a -10 point enchant penalty (barring 90% to horribly unlucky 100%) . I need your character's Race, STR bonus and CON bonus to confirm if your results were accurate. And, if your character has access to the test server, there is a simpler way to verify the enchant difficulty: skill migration. It's less cumbersome than dealing with coins and more accurate. With coins you can only measure in 2 point increments. Skill ranks can be used to measure 1 point penalties. E.g., to increase enchant success from 90% to 100% would require an increase of 20 EMC ranks (1 bonus for every 2 EMC ranks).

    Each 1% encumbered body weight equals a 2 point enchant penalty. Therefore, the 10 point enchant penalty (2020 coins) should equal 5% of the character's body weight.

    5% body weight = 2020 coins
    1% body weight = 404 coins (2020/5)
    160 coins = 1 lb.
    404 coins = 2.525 lbs (404/160)
    1% body weight (404 coins) = 2.525 lbs.
    Body weight = approx. 252.5 lbs. (2.525 lbs. * 100)

    You can also use the WEIGHT verb (by itself) to get a ballpark value for your character's weight (+/- approximately 3%). The WEIGHT verb only measures body weight and ignores all worn and carried items.

    There is no ensorcell encumbrance penalty so using coins to measure penalties won't work. This would have to be done in the test instance. But AFAIK there has never been any testing done to determine base difficulties. I did a little bit of research and was able to establish the following skill/stat bonuses:

    Code:
    Primary: 
    Level: ?
    Sorcerer Spell Ranks: +2 per rank up to level, +1 per rank above level
    Wisdom: +1 per stat bonus
    Intuition +1 per stat bonus
    
    Secondary: 
    Elemental Mana Control: +1 per 4 ranks
    Spiritual Mana Control: +1 per 4 ranks
    Arcane Symbols: +1 per 10 ranks
    Magic Item Use: +1 per 10 ranks
    
    Other: 
    Magical workshop: +20 bonus
    I did measure a T1 enchant difficulty but i'm not entirely certain of the item's starting enchant bonus. It was either a T1 +25 or +30 runestaff. I do recall that the increased penalty compared to an equivalent enchanted plain runestaff was 20 points. So, you are most likely correct that the enchant penalty for ensorcelled items increases with higher starting enchant bonuses.

    Here's an example of how I would use the test instance to check the enchant difficulty of a non-basic item.

    1. Set all skill ranks to zero except for approximately 10 HP ranks. You have access to HEALME in the test instance which immediately restores all mana.
    2. Determine the item's base enchant difficulty from the enchant research table on the wiki.
    3. Add enough skill until the character's bonus total is 100 higher than the items base difficulty. At this point take a reading. Remember a character's level adds to the bonus.
    4. Continue to add skill ranks until you reach the next messaging threshold.
    5. The item's increased difficulty will be equal to the points added from skill ranks + (100 - messaging success rate)

    I need to add one caveat. According to the GMs there is an additional penalty when using mirtokh. I believe this penalty applies to all items with a starting enchant bonus of +26 and higher, egardless of the potion. When I was constructing the enchant penalty tables I noted a nominal penalty of -5 points. This penalty is not included in the wiki tables. For example, the base penalty for an item with a starting enchant bonus of +30 is -296 according to the table. However, with the nominal mirtokh penalty the total is -301. For an item with a starting enchant bonus of +35 the base penalty is -356 but my actual reading was -361 (-356 + (-5)). Those are the only two starting bonuses I confirmed. Keep that in mind if you decide to test items with a starting bonus greater than +25.

    Mark

  3. #3

    Default

    Quote Originally Posted by Riltus View Post
    Horribly unlucky is 100% not 97%.
    Good point, I actually realized this an hour ago when I was comparing the difficulty messaging tables in the 735 and the 925 pages.

    Quote Originally Posted by Riltus View Post
    And, if your character has access to the test server, there is a simpler way to verify the enchant difficulty: skill migration.
    I do, excellent point. If I continue this I'll do it on the test server using your method.

    Quote Originally Posted by Riltus View Post
    I did measure a T1 enchant difficulty but i'm not entirely certain of the item's starting enchant bonus. It was either a T1 +25 or +30 runestaff. I do recall that the increased penalty compared to an equivalent enchanted plain runestaff was 20 points. So, you are most likely correct that the enchant penalty for ensorcelled items increases with higher starting enchant bonuses.
    Actually my initial speculation was that the enchant penalty added by going from T0 to T1 is less than the penalty added by going from T1 to T2, and so on. I half-assumed that the GMs wouldn't additionally complicate the formula by also making the ensorcell enchant penalty dependent on the starting enchant of the item as well! If that's the case, then this test becomes way too impractical to run, since for accurate data we'd need to ensorcell up TEN different items from T0 to T5 -- a 0x item, a 1x item, etc all the way up to 9x. Now I'm getting discouraged.
    Last edited by Merzbow; 03-07-2019 at 12:19 AM.

  4. #4

    Default

    Quote Originally Posted by Merzbow View Post
    Actually my initial speculation was that the enchant penalty added by going from T0 to T1 is less than the penalty added by going from T1 to T2, and so on. I half-assumed that the GMs wouldn't additionally complicate the formula by also making the ensorcell enchant penalty dependent on the starting enchant of the item as well! If that's the case, then this test becomes way too impractical to run, since for accurate data we'd need to ensorcell up TEN different items from T0 to T5 -- a 0x item, a 1x item, etc all the way up to 9x. Now I'm getting discouraged.
    I'm going to give this one more shot... I have two plain 6x runestaffs, going to buy a T1 for one of them and then I'll be able to see if starting enchant of 4x versus 6x makes a difference in the T0/T1 enchant penalty. If so I will give up this exercise because there's no practical way to accurately get the data we need.

  5. #5

    Default

    OK I redid the research on the 4x sword in the test instance based on Mark's instructions:

    1. Set all skills to 0 except HP at 10 and Wiz at 25. At GC, no spells, no relevant enhancives, no encum.
    2. 4x vultite short sword base enchant penalty is 200, char bonus is 213, so need to add 87 points to reach +100. To do this I raised Wiz to 50 and MnE to 74.
    3. Took reading, "horribly unlucky". To verify I'm exactly at the 100% breakpoint I removed 2 MnE and got "easily enough", so I'm good. Restored the 2 MnE.
    4. Swapped in the T1 4x sword, took a reading, "odds on your side".
    5. Took MnE to 94 before getting "easily enough".
    6. Per Mark's equation the penalty for a T1 on this item is: 20/2 + (100 - 90) = 10 + 10 = 20.

    Now that's interesting because in his post he said he came up with a penalty of 20 as well, but on a 5x or 6x weapon. This is good news because it implies that the ensorcell penalty is indeed independent of starting enchant. Mark, if you're 100% sure of what you saw then it'll save me the waste of having to T1 my 6x.
    Last edited by Merzbow; 03-07-2019 at 07:07 PM. Reason: 20/10 should be 20/2

  6. #6

    Default

    Quote Originally Posted by Merzbow View Post
    OK I redid the research on the 4x sword in the test instance based on Mark's instructions:

    1. Set all skills to 0 except HP at 10 and Wiz at 25. At GC, no spells, no relevant enhancives, no encum.
    2. 4x vultite short sword base enchant penalty is 200, char bonus is 213, so need to add 87 points to reach +100. To do this I raised Wiz to 50 and MnE to 74.
    3. Took reading, "horribly unlucky". To verify I'm exactly at the 100% breakpoint I removed 2 MnE and got "easily enough", so I'm good. Restored the 2 MnE.
    4. Swapped in the T1 4x sword, took a reading, "odds on your side".
    5. Took MnE to 94 before getting "easily enough".
    6. Per Mark's equation the penalty for a T1 on this item is: 20/10 + (100 - 90) = 10 + 10 = 20.

    Now that's interesting because in his post he said he came up with a penalty of 20 as well, but on a 5x or 6x weapon. This is good news because it implies that the ensorcell penalty is indeed independent of starting enchant. Mark, if you're 100% sure of what you saw then it'll save me the waste of having to T1 my 6x.
    Just checking if the equation in your post should read: 20 MnE ranks/2 + (100 - 90) = 20 and your total bonus to get the easily enough threshold reading was +310?

    213 base + (25 Wiz * 2) + (74 MnE / 2) + (20 MnE /2) = 310

    To the best of my recollection there was a 20 point difficulty increase for a T1 6x runestaff compared with an identical T0 6x runestaff. I'm not absolutely certain about the enchant bonus. There's an outside possibility that they were 5x but I don't think so, They were definitely not 4x.

    Edited to add: I found the runestaves in an old log. They were both +30 enchant bonus.

    Mark
    Last edited by Riltus; 03-07-2019 at 06:07 PM. Reason: runestaff info

  7. #7

    Default

    Quote Originally Posted by Riltus View Post
    Just checking if the equation in your post should read: 20 MnE ranks/2 + (100 - 90) = 20 and your total bonus to get the easily enough threshold reading was +310?
    213 base + (25 Wiz * 2) + (74 MnE / 2) + (20 MnE /2) = 310
    Oops, yes, I mean to write 20/2 instead of 20/10. So total bonus was indeed 310 at the "easily enough" breakpoint for the T1 sword.

    Quote Originally Posted by Riltus View Post
    To the best of my recollection there was a 20 point difficulty increase for a T1 6x runestaff compared with an identical T0 6x runestaff. I'm not absolutely certain about the enchant bonus. There's an outside possibility that they were 5x but I don't think so, They were definitely not 4x.

    Edited to add: I found the runestaves in an old log. They were both +30 enchant bonus.

    Mark
    Excellent. I think we can safely assume starting enchant does not influence the ensorcell enchant penalty then. I will continue with the 4x sword... (could use necro donations from anyone with a baby sorc that can't ensorcell anything else anyone would buy!)
    Last edited by Merzbow; 03-07-2019 at 07:09 PM.

  8. #8

    Default

    I have results for T2 now. I used the same 4x vultite short sword, except now with a T2. My char on the Test Server was still exactly the same, except with the updated sword, so all I did was:

    1. Swap in the T2 sword.
    2. Took a test reading: "Need some luck."
    3. Pump up MnE from 94 to 134 ranks to reach "easily enough".
    4. That's 40 ranks, so again we have a difficulty increase of 20 points.

    So to summarize, a T2 adds the same 20 point penalty over a T1 that a T1 adds over a T0. This is a bit surprising since I'd think there'd be some acceleration happening here. It could be a step function though... T3 might be where it starts to get nutty. We'll see.
    Last edited by Merzbow; 03-08-2019 at 03:55 AM. Reason: typo

  9. #9

    Default

    (EDIT: I was a dumbass at first and didn't do this step at GC, so I thought the penalty was much greater. In fact it's just the same as the earlier tier steps.)

    Did T3, same penalty increase:

    1. Swap in the T3 sword.
    2. Took a test reading: "Some luck".
    3. Increased MnE to 174 before reaching the "easily enough" breakpoint.
    4. Another 40 ranks, another 20 point difficulty increase.
    Last edited by Merzbow; 03-13-2019 at 09:57 AM.

  10. #10

    Default

    Did T4, once again same penalty increase:

    1. Swap in the T4 sword.
    2. Took a test reading: "Some luck".
    3. Increased EMC to 40 (from 0) before reaching the "easily enough" breakpoint.
    4. Another 40 ranks, another 20 point difficulty increase (since EMC counts as much as MnE).

    One more tier to go, but I think I see a pattern lol.

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •